CONDW

condition number for the operator (F*wF - Id)||^2. Here F is the operator PPFT.

Contents

Description

c = CONDW(N,R,BASISCHOICE) return the condition number for the
operator (F^*wF-Id)

Examples

     N = 32;  R = 2; Choice = 1;
     c = condW(N,R,Choice)
k = 1; lmax = 0.99749; error = 0.021264
k = 2; lmax = 0.99826; error = 0.018161
k = 3; lmax = 0.99886; error = 0.016348
k = 4; lmax = 0.99936; error = 0.015362
k = 5; lmax = 0.99981; error = 0.014984
k = 6; lmax = 1.0003; error = 0.015146
k = 7; lmax = 1.0007; error = 0.015872
k = 8; lmax = 1.0013; error = 0.017238
k = 9; lmax = 1.002; error = 0.019347
k = 10; lmax = 1.0028; error = 0.022314
k = 11; lmax = 1.004; error = 0.026267
k = 12; lmax = 1.0057; error = 0.03134
k = 13; lmax = 1.0081; error = 0.037665
k = 14; lmax = 1.0116; error = 0.045349
k = 15; lmax = 1.0166; error = 0.054416
k = 16; lmax = 1.0239; error = 0.06473
k = 17; lmax = 1.0341; error = 0.075871
k = 18; lmax = 1.0479; error = 0.087021
k = 19; lmax = 1.0659; error = 0.096929
k = 20; lmax = 1.0879; error = 0.10408
k = 21; lmax = 1.1126; error = 0.10713
k = 22; lmax = 1.1382; error = 0.10542
k = 23; lmax = 1.1625; error = 0.099311
k = 24; lmax = 1.1837; error = 0.089993
k = 25; lmax = 1.2008; error = 0.078977
k = 26; lmax = 1.2138; error = 0.067614
k = 27; lmax = 1.2233; error = 0.056844
k = 28; lmax = 1.23; error = 0.047182
k = 29; lmax = 1.2345; error = 0.038824
k = 30; lmax = 1.2376; error = 0.031763
k = 31; lmax = 1.2397; error = 0.025891
k = 32; lmax = 1.241; error = 0.021056
k = 33; lmax = 1.2419; error = 0.017103
k = 34; lmax = 1.2425; error = 0.013884
k = 35; lmax = 1.2429; error = 0.011269
k = 36; lmax = 1.2432; error = 0.0091479
k = 37; lmax = 1.2433; error = 0.0074297
k = 38; lmax = 1.2435; error = 0.0060381
k = 39; lmax = 1.2435; error = 0.0049111
k = 40; lmax = 1.2436; error = 0.0039983
k = 41; lmax = 1.2436; error = 0.0032586
k = 42; lmax = 1.2436; error = 0.0026589
k = 43; lmax = 1.2437; error = 0.0021724
k = 44; lmax = 1.2437; error = 0.0017775
k = 45; lmax = 1.2437; error = 0.0014565
k = 46; lmax = 1.2437; error = 0.0011955
k = 47; lmax = 1.2437; error = 0.0009829
k = 48; lmax = 1.2437; error = 0.00080958
k = 49; lmax = 1.2437; error = 0.00066808
k = 50; lmax = 1.2437; error = 0.00055239
k = 1; lmin = 0.99538; error = 0.024626
k = 2; lmin = 0.994; error = 0.028249
k = 3; lmin = 0.99213; error = 0.033185
k = 4; lmin = 0.98949; error = 0.039879
k = 5; lmin = 0.9856; error = 0.049005
k = 6; lmin = 0.9796; error = 0.061538
k = 7; lmin = 0.97002; error = 0.078751
k = 8; lmin = 0.9543; error = 0.10189
k = 9; lmin = 0.92862; error = 0.13102
k = 10; lmin = 0.88896; error = 0.16263
k = 11; lmin = 0.83509; error = 0.1875
k = 12; lmin = 0.77509; error = 0.194
k = 13; lmin = 0.72202; error = 0.1783
k = 14; lmin = 0.68383; error = 0.14861
k = 15; lmin = 0.65998; error = 0.11651
k = 16; lmin = 0.64615; error = 0.088843
k = 17; lmin = 0.63831; error = 0.067352
k = 18; lmin = 0.63383; error = 0.051325
k = 19; lmin = 0.63122; error = 0.039467
k = 20; lmin = 0.62967; error = 0.030626
k = 21; lmin = 0.62874; error = 0.023948
k = 22; lmin = 0.62816; error = 0.018836
k = 23; lmin = 0.62781; error = 0.014878
k = 24; lmin = 0.62758; error = 0.011787
k = 25; lmin = 0.62744; error = 0.0093573
k = 26; lmin = 0.62735; error = 0.0074391
k = 27; lmin = 0.6273; error = 0.0059198
k = 28; lmin = 0.62726; error = 0.004714
k = 29; lmin = 0.62724; error = 0.0037555
k = 30; lmin = 0.62723; error = 0.0029929
k = 31; lmin = 0.62722; error = 0.0023857
k = 32; lmin = 0.62721; error = 0.0019019
k = 33; lmin = 0.62721; error = 0.0015164
k = 34; lmin = 0.62721; error = 0.0012092
k = 35; lmin = 0.6272; error = 0.00096427
k = 36; lmin = 0.6272; error = 0.00076897
k = 37; lmin = 0.6272; error = 0.00061325
k = 38; lmin = 0.6272; error = 0.00048909
k = 39; lmin = 0.6272; error = 0.00039008
k = 40; lmin = 0.6272; error = 0.00031106
k = 41; lmin = 0.6272; error = 0.00024814
k = 42; lmin = 0.6272; error = 0.00019786
k = 43; lmin = 0.6272; error = 0.00015786
k = 44; lmin = 0.6272; error = 0.00012585
k = 45; lmin = 0.6272; error = 0.00010044
k = 46; lmin = 0.6272; error = 8.0035e-005
k = 47; lmin = 0.6272; error = 6.3672e-005
k = 48; lmin = 0.6272; error = 5.1067e-005
k = 49; lmin = 0.6272; error = 4.0444e-005
k = 50; lmin = 0.6272; error = 3.2586e-005

c =

    1.9829

See also

ERRORW, ERRORW_RANDOM, LOADW, FINDWEIGHTW, WEIGHTGENERATE, PPFT, ADJPPFT, BASISFUNCTION, EIGMAXMINFTCF.

Copyright

Copyright (C) 2011. Xiaosheng Zhuang, University of Osnabrueck