EIGMAXMINFTCF
condition number of P^\star w P using power method
Contents
DESCRIPTION
[LMAX,LMIN]=EIGMAXMINFTCF(W,K,LFILE)
Compute the maximal and minimal eigenvalues of the operator
P^\star w P
P is the pseudo-polar trasnform, see PPFT.
w is the weights on PP grid.
Input
W - the weighting matrix.
K - maximimal number of iterations in Power method
lfile - file handle. Write the result in a log file
Ouput
lmax - maximal eigenvalue
lmin - minimal eigenvalueEXAMPLE
N = 32; R = 2; Choice = 1;
W = generateW(N,R,Choice);
[lmax,lmin] = EigMaxMinFtCF(W,N);
k = 1; lmax = 0.99825; error = 0.02047 k = 2; lmax = 0.99912; error = 0.021398 k = 3; lmax = 1.0001; error = 0.023487 k = 4; lmax = 1.0014; error = 0.026786 k = 5; lmax = 1.0031; error = 0.031382 k = 6; lmax = 1.0054; error = 0.037375 k = 7; lmax = 1.0088; error = 0.044851 k = 8; lmax = 1.0138; error = 0.053829 k = 9; lmax = 1.0209; error = 0.064176 k = 10; lmax = 1.0309; error = 0.075483 k = 11; lmax = 1.0447; error = 0.086935 k = 12; lmax = 1.0626; error = 0.097258 k = 13; lmax = 1.0847; error = 0.10487 k = 14; lmax = 1.1099; error = 0.10831 k = 15; lmax = 1.1361; error = 0.10683 k = 16; lmax = 1.1611; error = 0.10075 k = 17; lmax = 1.1828; error = 0.091278 k = 18; lmax = 1.2004; error = 0.08 k = 19; lmax = 1.2137; error = 0.068343 k = 20; lmax = 1.2234; error = 0.057297 k = 21; lmax = 1.2301; error = 0.047405 k = 22; lmax = 1.2347; error = 0.038867 k = 23; lmax = 1.2378; error = 0.031673 k = 24; lmax = 1.2398; error = 0.025706 k = 25; lmax = 1.2412; error = 0.020809 k = 26; lmax = 1.242; error = 0.016816 k = 27; lmax = 1.2426; error = 0.013575 k = 28; lmax = 1.243; error = 0.010951 k = 29; lmax = 1.2432; error = 0.00883 k = 30; lmax = 1.2434; error = 0.0071181 k = 31; lmax = 1.2435; error = 0.0057373 k = 32; lmax = 1.2436; error = 0.004624 k = 1; lmin = 0.99765; error = 0.01735 k = 2; lmin = 0.99691; error = 0.021319 k = 3; lmin = 0.99569; error = 0.028302 k = 4; lmin = 0.99338; error = 0.040182 k = 5; lmin = 0.98847; error = 0.059496 k = 6; lmin = 0.97757; error = 0.089251 k = 7; lmin = 0.9539; error = 0.1313 k = 8; lmin = 0.9077; error = 0.18098 k = 9; lmin = 0.83564; error = 0.21956 k = 10; lmin = 0.75523; error = 0.2219 k = 11; lmin = 0.69304; error = 0.1861 k = 12; lmin = 0.65729; error = 0.13616 k = 13; lmin = 0.64019; error = 0.092387 k = 14; lmin = 0.63271; error = 0.06063 k = 15; lmin = 0.62955; error = 0.039368 k = 16; lmin = 0.62822; error = 0.025591 k = 17; lmin = 0.62766; error = 0.016774 k = 18; lmin = 0.62742; error = 0.011149 k = 19; lmin = 0.62731; error = 0.0075511 k = 20; lmin = 0.62726; error = 0.0052326 k = 21; lmin = 0.62723; error = 0.0037187 k = 22; lmin = 0.62722; error = 0.0027102 k = 23; lmin = 0.62721; error = 0.0020209 k = 24; lmin = 0.62721; error = 0.0015359 k = 25; lmin = 0.6272; error = 0.0011846 k = 26; lmin = 0.6272; error = 0.0009235 k = 27; lmin = 0.6272; error = 0.0007254 k = 28; lmin = 0.6272; error = 0.0005726 k = 29; lmin = 0.6272; error = 0.00045372 k = 30; lmin = 0.6272; error = 0.00036033 k = 31; lmin = 0.6272; error = 0.0002866 k = 32; lmin = 0.6272; error = 0.00022818
See also
Copyright
Copyright (C) 2011. Xiaosheng Zhuang, University of Osnabrueck