EIGMAXMINFTCF

condition number of P^\star w P using power method

Contents

DESCRIPTION

 [LMAX,LMIN]=EIGMAXMINFTCF(W,K,LFILE)
 Compute the maximal and minimal eigenvalues of the operator
                   P^\star w P
 P is the pseudo-polar trasnform, see PPFT.
 w is the weights on PP grid.
 Input
      W - the weighting matrix.
      K - maximimal number of iterations in Power method
  lfile - file handle. Write the result in a log file
 Ouput
      lmax - maximal eigenvalue
      lmin - minimal eigenvalue

EXAMPLE

      N = 32; R = 2; Choice = 1;
      W = generateW(N,R,Choice);
      [lmax,lmin] = EigMaxMinFtCF(W,N);
k = 1; lmax = 0.99825; error = 0.02047
k = 2; lmax = 0.99912; error = 0.021398
k = 3; lmax = 1.0001; error = 0.023487
k = 4; lmax = 1.0014; error = 0.026786
k = 5; lmax = 1.0031; error = 0.031382
k = 6; lmax = 1.0054; error = 0.037375
k = 7; lmax = 1.0088; error = 0.044851
k = 8; lmax = 1.0138; error = 0.053829
k = 9; lmax = 1.0209; error = 0.064176
k = 10; lmax = 1.0309; error = 0.075483
k = 11; lmax = 1.0447; error = 0.086935
k = 12; lmax = 1.0626; error = 0.097258
k = 13; lmax = 1.0847; error = 0.10487
k = 14; lmax = 1.1099; error = 0.10831
k = 15; lmax = 1.1361; error = 0.10683
k = 16; lmax = 1.1611; error = 0.10075
k = 17; lmax = 1.1828; error = 0.091278
k = 18; lmax = 1.2004; error = 0.08
k = 19; lmax = 1.2137; error = 0.068343
k = 20; lmax = 1.2234; error = 0.057297
k = 21; lmax = 1.2301; error = 0.047405
k = 22; lmax = 1.2347; error = 0.038867
k = 23; lmax = 1.2378; error = 0.031673
k = 24; lmax = 1.2398; error = 0.025706
k = 25; lmax = 1.2412; error = 0.020809
k = 26; lmax = 1.242; error = 0.016816
k = 27; lmax = 1.2426; error = 0.013575
k = 28; lmax = 1.243; error = 0.010951
k = 29; lmax = 1.2432; error = 0.00883
k = 30; lmax = 1.2434; error = 0.0071181
k = 31; lmax = 1.2435; error = 0.0057373
k = 32; lmax = 1.2436; error = 0.004624
k = 1; lmin = 0.99765; error = 0.01735
k = 2; lmin = 0.99691; error = 0.021319
k = 3; lmin = 0.99569; error = 0.028302
k = 4; lmin = 0.99338; error = 0.040182
k = 5; lmin = 0.98847; error = 0.059496
k = 6; lmin = 0.97757; error = 0.089251
k = 7; lmin = 0.9539; error = 0.1313
k = 8; lmin = 0.9077; error = 0.18098
k = 9; lmin = 0.83564; error = 0.21956
k = 10; lmin = 0.75523; error = 0.2219
k = 11; lmin = 0.69304; error = 0.1861
k = 12; lmin = 0.65729; error = 0.13616
k = 13; lmin = 0.64019; error = 0.092387
k = 14; lmin = 0.63271; error = 0.06063
k = 15; lmin = 0.62955; error = 0.039368
k = 16; lmin = 0.62822; error = 0.025591
k = 17; lmin = 0.62766; error = 0.016774
k = 18; lmin = 0.62742; error = 0.011149
k = 19; lmin = 0.62731; error = 0.0075511
k = 20; lmin = 0.62726; error = 0.0052326
k = 21; lmin = 0.62723; error = 0.0037187
k = 22; lmin = 0.62722; error = 0.0027102
k = 23; lmin = 0.62721; error = 0.0020209
k = 24; lmin = 0.62721; error = 0.0015359
k = 25; lmin = 0.6272; error = 0.0011846
k = 26; lmin = 0.6272; error = 0.0009235
k = 27; lmin = 0.6272; error = 0.0007254
k = 28; lmin = 0.6272; error = 0.0005726
k = 29; lmin = 0.6272; error = 0.00045372
k = 30; lmin = 0.6272; error = 0.00036033
k = 31; lmin = 0.6272; error = 0.0002866
k = 32; lmin = 0.6272; error = 0.00022818

See also

PPFT, ADJPPFT, FTCF

Copyright

 Copyright (C) 2011. Xiaosheng Zhuang, University of Osnabrueck